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RDARP is a variation of offline Dial-a-Ride, where each request has not only a source and
destination but also a revenue that is earned for serving the request. The input to RDARP is a
uniform metric space, a set of requests, a time limit T . Each request has a source point and a
destination point in the metric space, and a revenue, where the revenues are nonuniform. A server
starts at a designated point in the metric space, which is the origin. The goal is to move the server
through the metric space, serving requests one at a time so as to maximize the revenue earned in
T time units, with nonuniform revenues.

Algorithm 1 quickOPT2
1: Find the highest revenue set of requests S that can be completed in the next 2 time units
2: move to it
3: serve it

HRF ′ is a version of the Highest Revenue First algorithm, that operates only at even time
units starting at t = 0. Thus it serves the highest revenue request available at the time units
t = 0, 2, 4, ..., T − 1.
OPT is an algorithm that yields an optimal result.

Algorithm 2 HRF’
1: if T is even then
2: At evey even time, determine which request earns the greatest revenue and move to location
3: of this request. Denote this request as r. If no unserved requests exist, do nothing until next
4: even time.
5: else if T is odd then
6: At time 0, do nothing.
7: At every odd time, determine which request earns the greatest revenue and move to the
8: source location of this request. Denote this request as r. If no unserved requests exist, do
9: nothing until the next even time.

10: At evey even time, complete request r from the previous step
11: end if

sortedOPT is a version of the OPT algorithm, that sorts all requests that OPT can serve by revenue
in decreasing order: r1, r2, . . . ri, where r1 >= r2 >= . . . ri

Define rev(A) to be the revenue earned by the algorithm A.
The goal of this document is to prove the following theorems.

Theorem 1. quickOPT2 is a 2-approximation for offline RDARP on the uniform metric.

rev(quickOPT2) ≥ rev(HRF ′) ≥ 1

2
rev(sortedOPT ) =

1

2
rev(OPT )

We will prove this theorem using the following lemmas.

Define what a window is. Let a window denote a pair of time units.
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Let rev(quickOPT2(w1, ..., wk)) refer to the revenue earned by quickOPT2 in windows w1 to wk

inclusive. Note rev(HRF ′(w1, ..., wk)) is equal to the revenue of the top k highest-revenue requests.

Lemma 1. For k = 1...T2 , rev(quickOPT2(w1, ..., wk)) ≥ rev(HRF ′(w1, ..., wk))

Proof. Base step: k = 1. In w1, HRF ′ will serve the request with rmax. By definition, quickOPT2
will serve the highest revenue set of requests S that can be completed in the next 2 time unites.
Therefore, quickOPT2 will either serve the request with the highest revenue rmax or the highest
revenue set of request S such that rev(S) ≥ rmax. Hence, rev(quickOPT2(w1)) ≥ rev(HRF ′(w1))
holds for k = 1.

Inductive step: Assume rev(quickOPT2(w1, ..., wk)) ≥ rev(HRF ′(w1, ..., wk)) (ind. hyp.).
We show that rev(quickOPT2(w1, ...wk+1)) ≥ rev(HRF ′(w1, ..., wk+1)). There are two cases.

Case 1: rev(quickOPT2(wk+1) ≥ rev(HRF ′(wk+1)). Combining this inequality with the ind.
hyp. implies rev(quickOPT2(w1, ...wk+1)) ≥ rev(HRF ′(w1, ..., wk+1))

Case 2: rev(quickOPT2(wk+1)) < rev(HRF ′(wk+1)). Let v be the last request served by
HRF’ at wk+1. By definition of quickOPT2, this must mean that quickOPT2 has already served
v. (otherwise quickOPT2 would be doing v or better in wk+1). Notice revenues earned by both
algorithms per time window does not increase as the time window number increases. Formally,
if hi (and qi, respectively) for i = 1...T/2 denotes the revenue earned by HRF’ (and quickOPT2,
respectively) in window i, then

hi ≥ hj , for all i, j where i < j and qi ≥ qj , for all i, j, where i < j (1)

Let wj , for some j < k + 1, be the time window where quickOPT2 served v. Let Qj be the set of
served requests that quickOPT2 served up to and including those serve in wj . Let Hk+1 be the set
of requests served by HRF ′ up to and including wk+1. It follows that Hk+1 ⊆ Qj by (∆). Thus,
rev(Hk+1)≤rev(Qj).

∆: Suppose for contradiction that there is some request v′ in Hk+1 not in Qj . Note v′ > v since
it is served before v in the HRF ′ schedule (since v was served in wk+1). But quickOPT2 served
v in wj instead of v′, while v′ was still available to be served by quickOPT2. This contradicts the
definition of quickOPT2.

Hence,

rev(HRF ′(w1, ..., wk+1))≤rev(quickOPT2(w1, w2, ..., wj)) ≤ rev(quickOPT2(w1, ..., wk+1))

Therefore, the addition of the revenue earned by HRF ′ from v in wk+1 will not be enough to
make HRF ′(w1....wk+1) > quickOPT2(w1...wk+1) by (4).

Lemma 2. rev(HRF ′) ≥ 1
2rev(sortedOPT ) = 1

2rev(OPT ).

Proof. Let the sequence of sortedOPT requests be denoted as r1, r2, ..., rn, where n ≤ T . Then,

T/2∑
i=1

ri ≥
1

2

n∑
i=1

ri =
1

2
rev(sortedOPT ) =

1

2
rev(OPT ) (2)

because ri ≥ rj for i < j, and n ≤ T .

2



Xinlin He RDARP 2020

Denote the sequence of HRF ′ requests as h1, h2, ..., hT/2. By greediness of HRF ′, hi ≥ ri for
all 1 ≤ i ≤ T/2. Hence,

rev(HRF ′) =

T/2∑
i=1

hi ≥
T/2∑
i=1

ri (3)

By equations (2) and (3), we have shown rev(HRF ′) ≥ 1
2rev(sortedOPT ) = 1

2rev(OPT ).

Theorem 2. quickOPT3 is a 2
3 -approximation for offline RDARP on the uniform metric.

rev(quickOPT3) ≥ rev(HR2F ) ≥ 2

3
OPT

We will prove this theorem using the following lemmas.

Define what a window is. Let a window denote 3 time units. Assume for now that T = 3k.
Let rev(quickOPT3(w1, ..., wk)) refer to the revenue earned by quickOPT3 in windows w1 to

wk inclusive. HR2F is the revenue version of two-chain algorithm.

Algorithm 3 HR2f
1: Input: Set S of requests, time limit T , origin
2: Initialize server to origin
3: while available requests remain and time has not run out do
4: if any 2-chains remain then
5: find the highest-revenue 2-chain with revenue max(rev((u, v)))
6: else
7: Find the highest revenue 1-chain (singleton) with revenue max(rev(w))
8: end if
9: Serve either (u, v) or w, the one with higher-revenue.

10: end while

Lemma 3. For k = 1...T2 , rev(quickOPT3(w1, ..., wk)) ≥ rev(HR2F (w1, ..., wk)).

Proof. Base step: k = 1. In w1, HR2F will serve a chain of 2 requests with the total revenue
rmax. By definition, quickOPT3 will serve the highest revenue set of requests S that can be
completed in the next 3 time units. Therefore, quickOPT3 will either serve the two-chain with the
highest total revenue rmax or the highest revenue set of request S such that rev(S) ≥ rmax. Hence,
rev(quickOPT3(w1)) ≥ rev(HRF ′(w1)) holds for k = 1.

Inductive step: Assume rev(quickOPT3(w1, ..., wk)) ≥ rev(HR2F (w1, ..., wk)) (ind. hyp.).
We show that rev(quickOPT3(w1, ...wk+1)) ≥ rev(HR2F (w1, ..., wk+1)). There are two cases.

Case 1: rev(quickOPT3(wk+1) ≥ rev(HR2F (wk+1)). Combining this inequality with the ind.
hyp. implies rev(quickOPT3(w1, ...wk+1)) ≥ rev(HR2F (w1, ..., wk+1))

Case 2: rev(quickOPT3(wk+1)) < rev(HR2F (wk+1)). Let u, v be the last two-chain served by
HR2F at wk+1. By definition of quickOPT3, this must mean that quickOPT3 has already served at
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least one of u or v (or both). (Otherwise quickOPT3 would be serving u, v or some higher-revenue
set in wk+1). Notice revenues earned by both algorithms per time window decreases as the time
window number increases. Formally, if hi (and qi, respectively) for i = 1...T/2 denotes the revenue
earned by HR2F (and quickOPT3, respectively) in window i, then

hi ≥ hj , for all i, j where i < j and qi ≥ qj , for all i, j, where i < j (4)

Let wj , for some j < k + 1, be the time window where quickOPT3 served v. Let Qj be the set of
served requests that quickOPT3 served up to and including those serve in wj . Let Hk+1 be the set
of requests served by HR2F up to and including wk+1. It follows that Hk+1 ⊆ Qj by (∆). Thus,
rev(Hk+1)≤rev(Qj).

∆: Suppose for contradiction that there is some request v′ in Hk+1 not in Qj . Note v′ > v since
it is served before v in the HR2F schedule (since v was served in wk+1). But quickOPT3 served
v in wj instead of v′, while v′ was still available to be served by quickOPT3. This contradicts the
definition of quickOPT3.

Hence,

rev(HRF ′(w1, ..., wk+1))≤rev(quickOPT3(w1, w2, ..., wj)) ≤ rev(quickOPT3(w1, ..., wk+1))

Therefore, the addition of the revenue earned by HRF ′ from v in wk+1 will not be enough to
make HRF ′(w1....wk+1) > quickOPT3(w1...wk+1) by (4).
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