RDARP is a variation of offline Dial-a-Ride, where each request has not only a source and destination but also a revenue that is earned for serving the request. The input to RDARP is a uniform metric space, a set of requests, a time limit T . Each request has a source point and a destination point in the metric space, and a revenue, where the revenues are nonuniform. A server starts at a designated point in the metric space, which is the origin. The goal is to move the server through the metric space, serving requests one at a time so as to maximize the revenue earned in T time units, with nonuniform revenues.

Algorithm 1 quickOPT2

- 1: Find the highest revenue set of requests S that can be completed in the next 2 time units
- 2: move to it
- 3: serve it

 HRF' is a version of the Highest Revenue First algorithm, that operates only at even time units starting at $t = 0$. Thus it serves the highest revenue request available at the time units $t = 0, 2, 4, ..., T - 1.$

OPT is an algorithm that yields an optimal result.

Algorithm 2 HRF'

- 1: if T is even then
- 2: At evey even time, determine which request earns the greatest revenue and move to location
- 3: of this request. Denote this request as r . If no unserved requests exist, do nothing until next
- 4: even time.

5: else if T is odd then

- 6: At time 0, do nothing.
- 7: At every odd time, determine which request earns the greatest revenue and move to the
- 8: source location of this request. Denote this request as r. If no unserved requests exist, do
- 9: nothing until the next even time.
- 10: At evey even time, complete request r from the previous step
- 11: end if

sortedOPT is a version of the OPT algorithm, that sorts all requests that OPT can serve by revenue in decreasing order: $r_1, r_2, \ldots r_i$, where $r_1 \geq r_2 \geq \ldots r_i$

Define $rev(A)$ to be the revenue earned by the algorithm A.

The goal of this document is to prove the following theorems.

Theorem 1. quickOPT2 is a 2-approximation for offline RDARP on the uniform metric.

$$
rev(quickOPT2) \geq rev(HRF') \geq \frac{1}{2}rev(sortedOPT) = \frac{1}{2}rev(OPT)
$$

We will prove this theorem using the following lemmas.

Define what a window is. Let a window denote a pair of time units.

Let $rev-quickOPT2(w_1, ..., w_k))$ refer to the revenue earned by quickOPT2 in windows w_1 to w_k inclusive. Note $rev(HRF'(w_1, ..., w_k))$ is equal to the revenue of the top k highest-revenue requests.

Lemma 1. For $k = 1...\frac{T}{2}$ $\frac{T}{2}, rev-quick OPT2(w_1, ..., w_k)) \geq rev(HRF'(w_1, ..., w_k))$

Proof. Base step: $k = 1$. In w_1 , HRF' will serve the request with r_{max} . By definition, $quickOPT2$ will serve the highest revenue set of requests S that can be completed in the next 2 time unites. Therefore, quickOPT2 will either serve the request with the highest revenue r_{max} or the highest revenue set of request S such that $rev(S) \ge r_{\text{max}}$. Hence, $rev(quickOPT2(w_1)) \ge rev(HRF'(w_1))$ holds for $k = 1$.

Inductive step: Assume $rev(quick OPT2(w_1, ..., w_k)) \geq rev(HRF'(w_1, ..., w_k))$ (ind. hyp.). We show that $rev-quickOPT2(w_1,...w_{k+1})) \geq rev(HRF'(w_1,...,w_{k+1}))$. There are two cases.

Case 1: $rev-quickOPT2(w_{k+1}) \geq rev(HRF'(w_{k+1}))$. Combining this inequality with the ind. hyp. implies $rev-quickOPT2(w_1,...w_{k+1})) \geq rev(HRF'(w_1,...,w_{k+1}))$

Case 2: $rev-quickOPT2(w_{k+1})) < rev(HRF'(w_{k+1}))$. Let v be the last request served by HRF' at w_{k+1} . By definition of *quickOPT2*, this must mean that *quickOPT2* has already served v. (otherwise quickOPT2 would be doing v or better in w_{k+1}). Notice revenues earned by both algorithms per time window does not increase as the time window number increases. Formally, if h_i (and q_i , respectively) for $i = 1...T/2$ denotes the revenue earned by HRF' (and quickOPT2, respectively) in window i , then

$$
h_i \ge h_j, \text{ for all } i, j \text{ where } i < j \text{ and } q_i \ge q_j, \text{ for all } i, j, \text{ where } i < j \tag{1}
$$

Let w_j , for some $j < k+1$, be the time window where quick OPT2 served v. Let Q_j be the set of served requests that $quickOPT2$ served up to and including those serve in w_j . Let H_{k+1} be the set of requests served by HRF' up to and including w_{k+1} . It follows that $H_{k+1} \subseteq Q_j$ by (Δ). Thus, $rev(H_{k+1}) \leq rev(Q_i).$

 Δ : Suppose for contradiction that there is some request v' in H_{k+1} not in Q_j . Note $v' > v$ since it is served before v in the HRF' schedule (since v was served in w_{k+1}). But $quickOPT2$ served v in w_j instead of v', while v' was still available to be served by quickOPT2. This contradicts the definition of $quickOPT2$.

Hence,

$$
rev(HRF'(w_1,...,w_{k+1})) \leq rev(quickOPT2(w_1,w_2,...,w_j)) \leq rev(quickOPT2(w_1,...,w_{k+1}))
$$

Therefore, the addition of the revenue earned by HRF' from v in w_{k+1} will not be enough to make $HRF'(w_1....w_{k+1}) > quickOPT2(w_1...w_{k+1})$ by (4). \Box

Lemma 2. $rev(HRF') \geq \frac{1}{2}$ $\frac{1}{2}rev(sortedOPT) = \frac{1}{2}rev(OPT).$

Proof. Let the sequence of sortedOPT requests be denoted as $r_1, r_2, ..., r_n$, where $n \leq T$. Then,

$$
\sum_{i=1}^{T/2} r_i \ge \frac{1}{2} \sum_{i=1}^{n} r_i = \frac{1}{2} rev(sortedOPT) = \frac{1}{2} rev(OPT)
$$
 (2)

because $r_i \geq r_j$ for $i < j$, and $n \leq T$.

Denote the sequence of HRF' requests as $h_1, h_2, ..., h_{T/2}$. By greediness of $HRF', h_i \geq r_i$ for all $1 \leq i \leq T/2$. Hence,

$$
rev(HRF') = \sum_{i=1}^{T/2} h_i \ge \sum_{i=1}^{T/2} r_i
$$
\n(3)

By equations (2) and (3), we have shown $rev(HRF') \geq \frac{1}{2}$ $\frac{1}{2}rev(sortedOPT) = \frac{1}{2}rev(OPT).$ \Box

Theorem 2. quickOPT3 is a $\frac{2}{3}$ -approximation for offline RDARP on the uniform metric.

$$
rev-quickOPT3) \geq rev(HR2F) \geq \frac{2}{3}OPT
$$

We will prove this theorem using the following lemmas.

Define what a window is. Let a window denote 3 time units. Assume for now that $T = 3k$. Let $rev-quickOPT3(w_1, ..., w_k))$ refer to the revenue earned by quickOPT3 in windows w_1 to w_k inclusive. $HR2F$ is the revenue version of two-chain algorithm.

Algorithm 3 HR2f

1: Input: Set S of requests, time limit T , origin 2: Initialize server to origin 3: while available requests remain and time has not run out do 4: if any 2-chains remain then 5: find the highest-revenue 2-chain with revenue $max(rev((u, v)))$ 6: else 7: Find the highest revenue 1-chain (singleton) with revenue $max(rev(w))$ 8: end if 9: Serve either (u, v) or w, the one with higher-revenue. 10: end while

Lemma 3. For $k = 1... \frac{T}{2}$ $\frac{1}{2}, rev-quick OPT3(w_1, ..., w_k)) \geq rev(HR2F(w_1, ..., w_k)).$

Proof. Base step: $k = 1$. In w_1 , $HR2F$ will serve a chain of 2 requests with the total revenue r_{max} . By definition, *quickOPT*3 will serve the highest revenue set of requests S that can be completed in the next 3 time units. Therefore, *quickOPT*3 will either serve the two-chain with the highest total revenue r_{max} or the highest revenue set of request S such that $rev(S) \ge r_{\text{max}}$. Hence, $rev-quick OPT3(w_1) \geq rev(HRF'(w_1))$ holds for $k = 1$.

Inductive step: Assume $rev(quickOPT3(w_1,...,w_k)) \geq rev(HR2F(w_1,...,w_k))$ (ind. hyp.). We show that $rev-quickOPT3(w_1,...w_{k+1})) \geq rev(HR2F(w_1,...,w_{k+1}))$. There are two cases.

Case 1: $rev-quickOPT3(w_{k+1}) \geq rev(HR2F(w_{k+1}))$. Combining this inequality with the ind. hyp. implies $rev(quick OPT3(w_1, ... w_{k+1})) \geq rev(HR2F(w_1, ..., w_{k+1}))$

Case 2: $rev-quickOPT3(w_{k+1})$ \lt $rev(HR2F(w_{k+1}))$. Let u, v be the last two-chain served by HR2F at w_{k+1} . By definition of *quickOPT*3, this must mean that *quickOPT*3 has already served at least one of u or v (or both). (Otherwise *quickOPT*3 would be serving u, v or some higher-revenue set in w_{k+1}). Notice revenues earned by both algorithms per time window decreases as the time window number increases. Formally, if h_i (and q_i , respectively) for $i = 1...T/2$ denotes the revenue earned by HR2F (and quickOPT3, respectively) in window i , then

$$
h_i \ge h_j, \text{ for all } i, j \text{ where } i < j \text{ and } q_i \ge q_j, \text{ for all } i, j, \text{ where } i < j \tag{4}
$$

Let w_j , for some $j < k+1$, be the time window where $quickOPT3$ served v. Let Q_j be the set of served requests that $quickOPT3$ served up to and including those serve in w_j . Let H_{k+1} be the set of requests served by HR2F up to and including w_{k+1} . It follows that $H_{k+1} \subseteq Q_j$ by (Δ). Thus, $rev(H_{k+1}) \leq rev(Q_i).$

 Δ : Suppose for contradiction that there is some request v' in H_{k+1} not in Q_j . Note $v' > v$ since it is served before v in the HR2F schedule (since v was served in w_{k+1}). But quickOPT3 served v in w_j instead of v', while v' was still available to be served by quickOPT3. This contradicts the definition of $quickOPT3$.

Hence,

$$
rev(HRF'(w_1,...,w_{k+1})) \leq rev(quickOPT3(w_1,w_2,...,w_j)) \leq rev(quickOPT3(w_1,...,w_{k+1}))
$$

Therefore, the addition of the revenue earned by HRF' from v in w_{k+1} will not be enough to make $HRF'(w_1....w_{k+1}) > quickOPT3(w_1...w_{k+1})$ by (4). \Box